Data Specification for RAM and TAG - Student Cost Driver

(Post 4/9/15 Programme Board)

1. Data specification and source

Units

All fully matriculated students at a census date of 31st October

- The raw census figures will provide the headcount cost driver;
- Students in the census population will be categorised into a small number of groups in order to apply weightings to arrive at the weighted population cost driver

Source of data

The data will be extracted from STUDMI on the first working day after 31st October each year. STUDMI is a universe that receives nightly updates from EUCLID and is designed to provide strategic management information on this data.

Details of clarification

- Fully matriculated status will be determined by using a filter of <C/L Admin status code> = "MM";
- Filters will also exclude the following students who are not participating at UoE but who appear in STUDMI:
 - Dormant students;
 - Sabbatical students;
 - Students on programmes that are only validated by UoE (currently only 4 SRUC UG programmes).
- Assignment to school/college will be determined by programme ownership;

Frequency of snapshots

The extracted cost driver figures remain fixed at the census date and will not be updated at any later point in the academic session.

Production of forecasts

Colleges/Schools will be asked to provide student headcount intake targets for years 1 to 3 as part of their planning submissions, as they do currently. Together with these intake targets it is envisaged that a tool similar to the Diagonal Tables will be used to produce the total population forecasts for this cost driver.

2. Benefits of approach

• It is simple: a student is either fully matriculated or not on the census date. (In comparison to an approach which looks cumulatively over a whole session for students who have been matriculated at any point during the session, for example the historic headcounts in the Diagonal Tables.)

- Also adding to the simplicity is that there are minimal exclusions, and the exclusions are generic.
- The 31st October census date is sufficiently representative of the population over the session for a model which aims to be simple and strategic. See Appendix 1 for a monthly snapshot time-series analysis over a session.
- The baseline actual cost driver is known early in the session to which it relates, therefore
 forecasting can start early in the planning cycle, and does not need to be adjusted to take account
 of baseline updates.
- The data is only extracted once therefore there is only one set of data to consider (adding to its simplicity) and it is efficient in the resource required to run the model.

3. Groupings of headcounts to use in the weighted population cost driver

The students will be grouped to enable weighting the headcounts to use as an alternative cost driver to the raw headcounts. There are many ways in which the students could be grouped, taking into account such considerations as:

- The relative costs of supporting different types of students (e.g. UG/PGT/PGR or on campus/distance learning);
- Whether numbers for a certain group are large (a separate group) or minimal (group with others);
- The duration of their time at UoE and whether during that time they are full- or part-time. This could be represented by their FTE or the number of credits taken;
- Specific groups for which we may wish to avoid inadvertently disincentivising recruitment if we
 were to impose a higher cost base. (Note that if we wish to incentivise recruiting higher fee-rate
 paying students then this would be more appropriately driven through the income side of the
 RAM.)
- Groups for which there are controls on numbers, such as those funded by the SFC (Scottish/EU feerate UG students).

However, to take account of all these aspects would result in a large number of groupings, and the more groupings the more complex the model. To keep the RAM simple, a small number of key groupings is required. The following table illustrates the proposal for 5 groupings of students, using colours to indicate cells in the same grouping. The figures give the number of headcounts in the 31 October 2014 census snapshot. A breakdown of the figures by college is given in Appendix 2.

Headcounts	UG	PGT	PGR
FT full session	19,883	3,792	2,670
FT part session	804	35	34
PT full session	290	420	402
PT part session	1	15	
PT unstructured	22	411	
PT distance learning		1,904	
OLL	232		

Summary of groupings in above table:

Grouping description	Total headcount			
FT UG	20,687			
FT PG	6,531			
PT structured non DL	1,128			
PT unstructured non DL and OLL	665			
PT DL	1,904			

[The Programme Board agreed that all distance learning students would be grouped together. (There were approximately 20 full-time distance learning students in 2014/15, spread across 6 schools in CHSS.)]

The reasons for grouping the students in this way:

- Full-time undergraduate students are by far the majority in the population which would indicate having a separate group;
- We may wish to grow our undergraduate and postgraduate populations at different rates;
- Postgraduates are generally taught/supervised throughout the whole session whereas undergraduates are not taught over the summer, which would suggest higher support costs for postgraduates;
- The full-time part session students are largely visiting undergraduate students here for semester one. There are a similar, if slightly smaller, cohort here for semester two who are excluded from the population due to the measure being a census, therefore for the data to be representative the semester one students to count as a full-time full session student. (Note that if we were to take an average of the populations across both semesters this would amount to a drop of 113, or 0.5% of the undergraduate population, which is considered immaterial.);
- There may be a desire to incentivise the recruitment of distance learning students, and they tend to have different resource requirements to students on campus;
- OLL students are quite dissimilar to the rest of the population in a number of aspects (FTE, profile of population across the session, financial arrangements etc) which indicates a separate group. However, this would be a very small group;
- Part-time unstructured non distance learning students are a generally a low FTE value and their
 profile varies across the session. This is also a small group, and has most in common with the OLL
 population. Therefore group these together with OLL;
- The remaining part-time non-distance learning students are small in number, hence proposing grouping them together.

4. Communication and processes to ensure data availability and accuracy, and to support forecasting

For all of the cost drivers that we use in RAM and TAG we need to have robust processes to ensure buy-in and ownership of the figures used, and any associated policies.

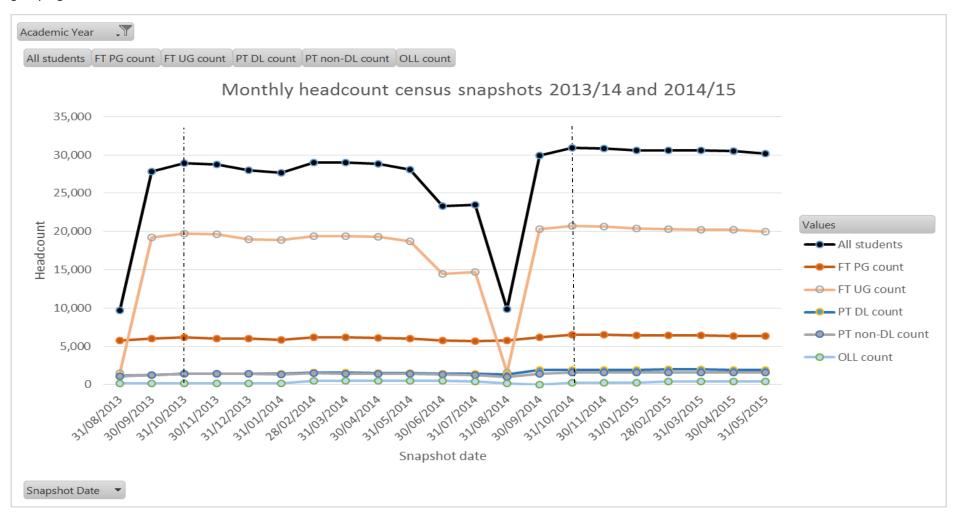
The student data in the STUDMI data warehouse is robust and reliable, and data from it and its source, EUCLID, is used widely for many purposes.

To implement this cost driver proposal the following actions are required:

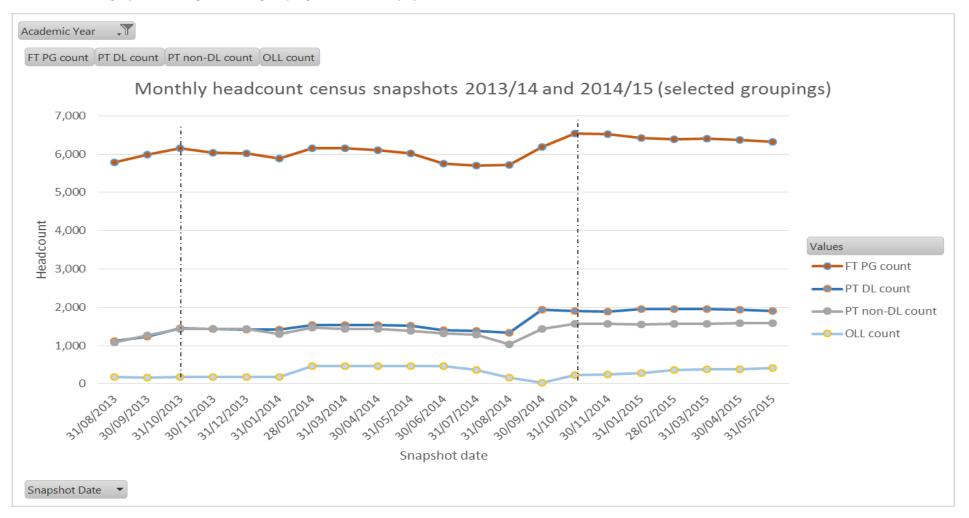
Action	Responsibility
Create a BI Suite report to extract the census data from STUDMI, present it in a	GaSP
usable form for RAM and TAG and make it accessible across the university	
Run the report for 31st October each year and make this extracted data available	GaSP
across the university	
Input this extracted data to a population forecasting model, such as the Diagonal	GaSP
Tables, and develop this model to facilitate forecasting of the headcounts data by	
cost driver data groupings.	
Manage the transition from the current approach to forecasting student numbers	GaSP with
to the proposed approach, recognising that there will be a period of parallel	Colleges
operation of the approaches during which duplication of effort should be	
minimised	
Review the census population data annually and monitor the monthly census	GaSP,
time-series data to ensure accuracy, timeliness, and representativeness of the	Student Systems
data. Manage any undesired behaviour leading to, for example, inaccuracies in	and Colleges
the matriculation timing of students or the exclusion of certain groups of students	
from EUCLID	

5. Consultation audience

The following colleagues were included in the consultation for this proposal:


Andy Davis	SCE, College Accountant
Judith Salters	SCE, School of Chemistry
Jim Nisbet	MVM, Planning Officer
Sheila Lodge	MVM, Head of Academic Administration
Helen Taylor	HSS, College Office
Andrew Thomson	HSS, College Office
Susan McIntosh	HSS, College Accountant
Jim McGeorge	USG, Business Manager
Jamie Morton	USG, Student Systems
Lisa Dawson	USG, Student Systems
Barry Neilson	USG, Student Systems
Karen Osterburg	USG, Student Systems
Amy Woodgate	ISG, Learning, Teaching and Web
Jim Galbraith	GaSP
Kevin Harkin	GaSP
Peter Phillips	GaSP
Susan Cooper	GaSP
Pauline Jones	GaSP
Jennifer McGregor	GaSP
Tracey Slaven	Deputy Secretary, Strategic Planning
Craig Middlemass	BI/MI project
Lynda Hutchison	BI/MI project
Stuart Graham	TAG project
Wendy Groome-Vine	TAG project
Lorna McLoughlin	Management Accounts

Helen Stocks


28th August 2015, updated 9th September 2015

Appendix 1

Monthly census time-series graph 2013/14 and 2014/15 (to 31 May 2015) showing total headcount, and the elements of this broken down to the proposed groupings.

From the above graph, zooming in to the groupings with smaller populations:

Appendix 2: Groupings of students, by College

Groupings of students for use in the weighted headcount, by College, using colours to indicate cells in the same grouping. The figures give the number of headcounts in the 31 October 2014 census snapshot.

Headcounts	UG			PGT			PGR					
	HSS	MVM	SCE	Total	HSS	MVM	SCE	Total	HSS	MVM	SCE	Total
FT full session	12,249	2,422	5,212	19,883	2,933	149	710	3,792	1,000	578	1,092	2,670
FT part session	662	9	133	804	4		31	35	16	5	13	34
PT full session	214	22	54	290	335	45	40	420	239	113	50	402
PT part session	1			1	15			15				0
PT unstructured	17	5		22	405	6		411				0
PT distance learning				0	507	1,386	11	1,904				0
OLL	232			232				0				0

Summary of groupings in above table:

Grouping description	HSS	MVM	SCE	Total
FT UG	12,911	2,431	5,345	20,687
FT PG	3,953	732	1,846	6,531
PT structured non DL	804	180	144	1,128
PT unstructured non DL and OLL	654	11	0	665
PT DL	507	1,386	11	1,904
Total	18,829	4,740	7,346	30,915